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Numerous measures of dynamic stability have been proposed to
gauge fall risk in the elderly, including stride interval variability
and variability of the center of mass. However, these measures have
been deemed inadequate because they do not take into account
temporal information. Therefore, research on the measurement of
dynamic stability has turned to other analysis methods such as
stride interval dynamics and the maximum Lyapunov exponent.
Stride interval dynamics reflect the statistical persistence of an
individual’s stride interval time series and the Lyapunov exponent
quantifies local dynamic stability - the sensitivity of the system
to infinitesimal perturbations. In this study, we compare the ability
of these measurement tools to detect changes between overground
and compliant-surface walking, a condition known to affect stabil-
ity, to determine their aptness as measures of dynamic stability.
Fourteen able-bodied participants completed three 15 min walks,
two overground and one on a compliant surface. Our results show
that the Lyapunov exponent may be more sensitive to gait changes
than stride interval dynamics and gait variability measures.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Falls are a major cause of morbidity and mortality in older adults (Hausdorff, Rios, & Edelberg,
2001; Hill, Schwarz, Flicker, & Carroll, 1999; Kannus et al., 1999). For the elderly population, up to
70% of these falls occur during walking (Cali & Kiel, 1995; Menz, Lord, & Fitzpatrick, 2003; Norton,
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Campbell, Lee-Joe, Robinson, & Butler, 1997), often leading to hip fractures and subsequent hospital-
ization (Hausdorff et al., 2001). It is therefore important to screen for high-risk individuals so that
interventions can be put in place to prevent falls. One method of gauging fall risk is to quantify dy-
namic stability - the ability to maintain balance during locomotion.

Two examples of traditional measures of dynamic stability are stride interval variability
(Hausdorff, Edelberg, Mitchell, Goldberger, & Wei, 1997; Hausdorff et al., 2001) and the variability
of the center of mass, as quantified by the root-mean-square (RMS) of lower trunk accelerations
(Moe-Nilssen, 1998a). The term gait variability will be used to refer to these two measures. In recent
literature, it has been suggested that these measures are inadequate because they do not take into
consideration temporal information (Buzzi & Ulrich, 2004; England & Granata, 2007). Measures of
gait variability assume statistical independence of data points and hence, previous states of the loco-
motor system are ignored (Buzzi & Ulrich, 2004). Therefore, research on the measurement of dy-
namic stability has recently focused on other analysis methods in an attempt to quantify
temporal fluctuations in gait and provide further insight into the locomotor control system (Bruijn,
van Dieén, Meijer, & Beek, 2009a; Buzzi & Ulrich, 2004; Chang, Shaikh, & Chau, 2009; Dingwell &
Cusumano, 2000; Dingwell, Cusumano, Cavanagh, & Sternad, 2001; England & Granata, 2007; Gates
& Dingwell, 2007; Hausdorff, Cudkowicz, Firtion, Wei, & Goldberger, 1998; Hausdorff, Mitchell, et al.,
1997; Hausdorff et al., 1996; Jordan, Challis, Cusumano, & Newell 2009; Jordan, Challis, & Newell,
2007; West & Griffin, 1999). Stride interval dynamics and the maximum Lyapunov exponent are
two such analysis methods. Collectively, these two measures will be referred to as an individual’s
gait dynamics.

Stride interval dynamics is the statistical persistence of the temporal fluctuations within an indi-
vidual’s stride interval time series as measured by o, a scaling exponent quantified by detrended
fluctuation analysis (DFA) (Chang et al., 2009). Unlike measures of gait variability, DFA does not as-
sume statistical independence and attempts to quantify the degree of correlation within a data set.
Hausdorff et al. discovered that the temporal structure of stride-to-stride fluctuations are signifi-
cantly different between able-bodied individuals (o ~ 0.8-1.0) and patients with Parkinson’s and
Huntington’s diseases who typically present with lower « values (Hausdorff, Mitchell, et al., 1997;
Hausdorff et al., 1996, 2000). Herman et al. revealed that the statistical persistence of stride interval
fluctuations could distinguish fallers from non-fallers (Herman, Giladi, Gurevich, & Hausdorff, 2005),
whereas stride interval variability failed to do so. Thus, this measure may provide insight into the
neuromuscular control system. Furthermore, stride interval dynamics were found to be influenced
by gait speed (Jordan et al., 2007) and the use of a handrail during treadmill walking (Chang
et al., 2009). Taken all together, stride interval dynamics intrinsic to natural gait seem to be influ-
enced by the ability of the locomotor system to maintain dynamic stability. Lower « values (i.e.,
o~ 0.5) seem to be indicative of dynamic instability. However, the interpretation of higher values
(i.e., > 0.5) is still unclear since children, whose gait dynamics are yet to reach full maturity, exhibit
higher values than young able-bodied adults (Hausdorff, Zemany, Peng, & Goldberger, 1999), and
faster and slower walking paces yield higher values than preferred walking paces (Jordan et al.,
2007).

The maximum Lyapunov exponent quantifies local dynamic stability — the sensitivity of the sys-
tem to infinitesimal perturbations (Dingwell et al., 2001). Dingwell et al. (2001) presumed that it is
these perturbations that traditional gait variability measures are attempting to quantify. Since this
method entails measuring the divergence of movement trajectories at multiple instances in time, it
provides a more encompassing analysis of the temporal fluctuations in the locomotor system'’s sta-
bility than traditional measures. Hence, in contrast to DFA which assumes an underlying stochastic
process, this method assumes that the process is deterministic. Recent studies have shown that the
Lyapunov exponent is influenced by gait speed (Dingwell & Marin, 2006; England & Granata, 2007;
Kang & Dingwell, 2008). Generally, local dynamic stability was shown to be enhanced at slower
speeds (Dingwell & Marin, 2006; England & Granata, 2007; Kang & Dingwell, 2008), however a
more recent study suggests that slow walking may not be necessarily more stable (Bruijn et al.,
2009a). Buzzi and Ulrich (2004) showed that children with Down syndrome exhibited decreased
local dynamic stability. In addition, Lockhart and Liu (2008) found that fall-prone elderly individuals
exhibited significantly lower local dynamic stability than their healthy control counterparts.
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Stride interval variability, RMS of lower trunk accelerations, stride interval dynamics, and the
Lyapunov exponent have all been individually employed to quantify dynamic stability. However, as
outlined above, they each have very different underlying assumptions about processes generating
the time series data. Hence, an analysis contrasting the different methods may be particularly enlight-
ening. Although Bruijn, van Dieén, Meijer, and Beek (2009b) performed an elaborate analysis to test
the ability of the Lyapunov exponent to detect changes in walking conditions, a study to compare
the ability of all these measures to detect changes in dynamic stability has not been performed to date.
Thus, in this study, we compare the ability of each measure to detect changes between walking over-
ground and walking on a compliant surface for able-bodied individuals to determine their aptness as
measures of dynamic stability.

2. Methods
2.1. Participants

Fourteen able-bodied adult participants (five male, nine female) were recruited from the Bloor-
view Research Institute at Bloorview Kids Rehab in Toronto as a convenience sample. Participants
had normal or corrected-to-normal vision and were all right-foot dominant. All participants had
no self-reported musculoskeletal or neurological disorders that could affect their gait performance.
Mean age was 25.2+3.0 (SD) years. Mean height and mass were 1.69+0.09 (SD) m and
64.9 £ 12.7 (SD) kg, respectively. The study was approved by the Research Ethics Board of Bloorview
Kids Rehab, Toronto, Canada. All participants provided informed written consent prior to participa-
tion in the study.

2.2. Apparatus

Two ultra-thin, force-sensitive resistors (FSRs; models #402 and #406, Interlink Electronics, Cali-
fornia, USA) were used to capture the time of heel-strike and toe-off events. The FSRs were adhered
below the participant’s right shoe insole: the circular FSR (model #402, diameter: 0.5 in.) was placed
underneath the heel of the foot and the square FSR (model #406, side: 1.5 in.) was placed underneath
the ball of the foot (head of 1st metatarsal).

Linear accelerations of the lower trunk were measured along three orthogonal axes (anterio-pos-
terior, medio-lateral, and vertical) with a tri-axial capacitive micromachined accelerometer (model
MMA7260Q, Freescale Semiconductor, Texas, USA) set to a sensitivity range of +1.5 g. The accelerom-
eter was fixated onto an adjustable belt with Velcro™. The accelerometer was then placed snuggly
over the L3 segment of the lumbar spine, close to the standing center of mass, and the belt was
firmly tightened and additionally clipped in place to ensure it did not loosen during the walking
trials.

The FSRs and accelerometer were connected to a customized, battery-operated portable datalogger
containing an R-Engine-A processor board (Tern Inc., California, USA). The signals were sampled at
200 Hz and stored in a 128 MB CompactFlash card. The datalogger was carried in a custom-made small
backpack firmly fitted to the participant, taking care not to interfere with natural gait movements. The
entire apparatus weighed 720 g.

2.3. Protocol design

Participants walked in three consecutive trials, each for 15 min on a circular track (circumference:
34 m, walkway width: 1.2 m). The sequence of walking trials was as follows: (1) overground walking,
(2) walking on soft collegiate gym mats (QUED, Quebec, Canada), and (3) overground walking again.
The purpose of the third trial was to examine if gait dynamics were affected from recently walking on
a compliant surface. The collegiate gym mats were made of 2.2 Ib., 100ILD 2” thick polyurethane foam
reinforced by a 18 oz. fire resistant vinyl covering. The mats were fixed together with 2” wide velcro
fasteners.
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Participants walked at a self-selected comfortable walking speed via instruction to “walk at a com-
fortable pace”. The participants were given a 2 min practice period before each walking trial for the
purpose of familiarization. Participants were given 5 min to rest between trials.

2.4. Assessment of gait dynamics

The stride interval time series was extracted from the footswitch data by employing a probabi-
listic stride interval extraction algorithm that locates the initial time of heel strikes through
changes in magnitude and slope of the force (Chau & Rizvi, 2002). To minimize “start-up” effects,
the first 15 s of the stride interval time series was excluded from analysis. Since the mean number
of strides was decreased on the compliant surface condition compared to the overground condi-
tions, the stride number of the overground conditions was trimmed to the number of strides in
the compliant condition for each participant by truncating strides from the end of the stride inter-
val time series.

Subsequently, detrended fluctuation analysis was applied to the stride interval time series to
quantify its temporal dynamics. This analysis forms an accumulated sum of the time series which
is sectioned into a number of window sizes. The window sizes used were 16 to N/9, where N is
the total number of data points in the time series. This range was chosen because empirical findings
reveal that it gives a stable estimate of the scaling exponent o (Damouras, Chang, Sejdi¢, & Chau,
2010). Subsequently, the log of the average size of the fluctuation at each window size is plotted
against the log of the window size. The slope of this line yields o. Detrended fluctuation analysis
has proven useful in detecting the degree of correlation in highly non-stationary physiological data
(Herman et al., 2005). The spurious detection of correlations that are artifacts of non-stationarities is
also avoided with DFA (Herman et al., 2005). Methodological details regarding DFA can be found in
Chau (2001), Goldberger et al. (2002), Hausdorff et al. (1996), and Hausdorff, Mitchell, et al. (1997).
However, it is worthwhile to point out that o= 0.5 indicates a completely uncorrelated process (i.e.,
white noise); 0.5 <o < 1.0 is indicative of statistical persistence; « < 0.5 indicates statistical anti-
persistence.

Mean walking speed was calculated by multiplying the number of completed laps by the circum-
ference of the circular track and dividing by time elapsed for those laps. Mean stride length was cal-
culated by dividing the total distance by the number strides taken. Stride interval variability was
calculated by determining the coefficient of variation (SD/mean x 100%) of the extracted stride inter-
val time series (Hausdorff et al., 2001; Maki, 1997).

2.5. Accelerometry

The accelerometer was statically calibrated against gravity by positioning each of the sensing axes
perpendicular to the horizontal surface, first pointing up, and then down, to estimate the +1 g values.
The statically calibrated acceleration signals were subsequently corrected for tilt by utilizing an
approximation algorithm derived by Moe-Nilssen (1998a). Since the acceleration signals were trans-
formed to give a mean of zero due to the correction for tilt, the acceleration RMS is essentially the
standard deviation of the signal.

2.6. Maximum Lyapunov exponent

Local stability, quantified by the maximum Lyapunov exponent, is defined as the sensitivity of the
system to small perturbations and its dependence on initial conditions (Dingwell & Cusumano, 2000;
Rosenstein, Collins, & DeLuca, 1993). The exponent quantifies the exponential rate of divergence of
adjacent trajectories in phase space. The proximity of adjacent paths is indicative of local stability
and hence, the lower the Lyapunov exponent, the more stable the system.

To estimate the Lyapunov exponent for the considered series, we used the approach outlined in
Dingwell and Cusumano (2000) and Rosenstein et al. (1993). The method is based on the assumption
that 1-D measurements contain sufficient information about the underlying dynamics of the system.
Using these measurements we can reconstruct a multi-dimensional state space via a so-called
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time-delayed coordinate approach (Rosenstein et al., 1993). The approach requires estimation of two
parameters, minimum embedding dimension (dg) and time delay (Rosenstein et al., 1993).

In the present study, the time delay was estimated by using the autocorrelation function
(Rosenstein et al., 1993), while the estimation of the embedding dimension was performed using
the global false nearest neighbor analysis (Kennel, Brown, & Abarbanel, 1992). Our numerical analysis
indicated that the average number of embedding dimensions was equal to five. Similar results were
observed in previous gait studies (Dingwell & Cusumano, 2000; Dingwell et al., 2001); hence, we used
de =5 for all of our analyses. Upon successful estimation of these two parameters, we proceeded with
the calculation of the largest Lyapunov exponent.

In particular, the exponent was calculated as the slope of the average logarithmic divergence of the
neighboring trajectories in the state space (Dingwell & Cusumano, 2000; Dingwell et al., 2001;
Rosenstein et al., 1993). Using the procedure outlined in Dingwell et al. (2001), we calculated short-
term exponents (/st) and long-term exponents (4;7). Ast was calculated as the slope of the average log-
arithmic divergence between 0 and 1 stride, while /;; represents the slope of the average logarithmic
divergence between 4 and 10 strides. The x-axis of the divergence curve was in stride cycles. It should
be mentioned that because this algorithm was shown to be robust for small data sets (Rosenstein
et al,, 1993), each series was divided into segments with equal number of strides (in this case, 100
strides). Hence, the reported /. values represent average values (Dingwell & Cusumano, 2000; Dingwell
et al., 2001).

2.7. Statistics

After checking assumptions of normality and homoscedasticity, either a one-way ANOVA or Krus-
kal-Wallis test was used to determine significant differences between the three walking trials for the
scaling exponents, mean stride interval, mean stride length, gait speed, stride interval variability, RMS
of the accelerations, and Lyapunov exponents. Subsequently, pairwise comparisons between groups
employed the paired t-test or Mann-Whitney U-test. The intraclass correlation coefficient (-1, 1)
was used to quantify the agreement between the o values derived from the stride interval time series
of heel-strikes and toe-offs. A p-value of .05 (two-tailed) was adjusted by the Bonferroni correction to
yield a stricter significance level of .0167 for determining pairwise group differences. Statistical anal-
ysis was performed using MATLAB for Windows (The MathWorks, version R2008a).

3. Results

Stride interval variability was not significantly different between the first overground walk (OG1)
and walking on the compliant surface (CS) (p >.3) (Table 1). However, the stride interval variability of
the second overground walk (OG2) was significantly decreased compared to the CS condition (p <.01).
Gait speed was slightly lower on the compliant surface (Table 1), though it was not significantly dif-
ferent from OG1 (p >.3) or OG2 (p >.2). The mean stride interval and mean stride length were both
significantly longer (p <.003 and p <.0001, respectively) on the CS condition as compared to both
overground walks (Fig. 1).

Table 1
Gait parameters and stride interval dynamics of able-bodied participants during the three walking conditions.
0G1 cS 0G2
Gait speed (m/s) 1.27 +0.21 1.24+0.22 1.27£0.19
Stride interval variability - CV (%) 1.84+0.76 1.96 £ 0.62 1.41+0.36"
Scaling exponent (o) — Heel 0.97 £0.14 0.92 £0.17 0.96 £0.12
Scaling exponent («) — Toe 0.97 +0.14 0.91+0.16 0.97 £0.12

Values are means * SD; CV: coefficient of variation.
OG1: First overground walk, CS: Compliant surface, 0G2: Second overground walk.
T p<.0167 for pairwise comparison with the CS condition.
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Fig. 1. Comparison of mean stride interval (sec) and mean stride length (m) during OG1, CS and OG2. Each line represents one
participant. The mean stride interval and mean stride length in the CS condition were both significantly longer (p < 0.003 and
p <0.0001, respectively) than the OG conditions.
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Fig. 2. Typical raw lower trunk accelerations in the VT, AP and ML axes during overground walking (left) and walking on a
compliant surface (right) for an able-bodied young adult.

Plots of typical lower trunk accelerations in the vertical (VT), anterio-posterior (AP), and medio-
lateral (ML) directions during each of the three walking conditions are shown in Fig. 2. The RMS AP
acceleration for the first overground walk, OG1, was significantly different (p <.004) from that of
the CS condition (Table 2). The RMS ML acceleration of the second overground walk, OG2, was also
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Table 2
Mean RMS of lower trunk accelerations.
0G1 CS 0G2
Anterio-posterior 1.76 +0.277 1.91+0.26 1.83+0.19
Medio-lateral 1.31+£044 1.19+0.32 1.39 £ 0.44"
Vertical 2.32+0.65 2.19+0.56 2.38+0.64

Values are means +SD x 107! g.
T p<.0167 for pairwise comparison with the CS condition.

significantly different from that of the CS condition (p <.002). No other significant differences were
found between CS and OG1 or OG2 RMS values.

The scaling exponent «, when measured with the heel or toe FSR, did not show a significant differ-
ence (p >.1) between any of the three walking conditions (Table 1). The intraclass correlation coeffi-
cient revealed that the o derived from heel and toe FSR signals of each participant were in high
agreement (ICC > .98 and p <.0001 for all three conditions). Computation of the scaling exponent using
the typical window size range of 4 to N/4 yielded similar results.

The /;r showed a significant difference between CS and both OG conditions for ML (p <.001) and VT
(p <.015) trunk accelerations (Fig. 3). The /1 values of the AP trunk acceleration (Asp) signal and the
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Fig. 3. Long-term and short-term Lyapunov exponents in the anterio-posterior (A4p), medio-lateral (Ay;) and vertical (Ay)
directions. Each line represents one participant.
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Jst values for all three trunk acceleration signals did not show any significant differences between the
CS condition and OG1 or OG2 (p >.05).

4. Discussion

In this study, we examined the changes in stride interval variability, RMS of lower trunk accelera-
tions, stride interval dynamics as measured by DFA, and maximum Lyapunov exponents of lower
trunk accelerations in able-bodied young adults between overground walking and walking on a com-
pliant surface. The key result was that only /;7 of the ML and VT trunk accelerations could consistently
differentiate between OG and CS conditions.

Previous research showed that stride interval variability can distinguish fallers from non-fallers
(Hausdorff, Edelberg, et al., 1997; Hausdorff et al., 2001). However, more recently it has been shown
that nonlinear analysis methods, such as DFA may be more sensitive to changes in an individual’s
stability (Chang et al., 2009; Herman et al., 2005). Perhaps the capacity of stride interval variability
to differentiate among different patterns is limited because it treats each gait cycle independently
(Buzzi & Ulrich, 2004). Stride interval variability does not take into consideration temporal correla-
tions or point-to-point fluctuations in movement trajectories, which provide insight into the control
of the neuromuscular system. Thus, unsurprisingly, in the present study, stride interval variability
did not show a significant difference between OG1 and the CS condition. However, a decrease in var-
iability was observed in OG2 possibly due to a transfer effect from recently walking on a compliant
surface.

The center of mass (COM) has been described as a global indicator of balance (Moe-Nilssen, 1998b;
Winter, 1995). Typically, higher RMS accelerations are associated with walking instability (Menz et al.,
2003; Moe-Nilssen, 1998b). However, the RMS accelerations in the present study were unable to con-
sistently distinguish between OG and CS conditions. Able-bodied individuals are known to employ
numerous biomechanical strategies to adapt to walking on a compliant surface (MacLellan & Patla,
2006; Marigold & Patla, 2005). Marigold and Patla (2005) revealed that flexion of the knee was in-
creased to maintain toe clearance and that peak vertical COM was lower when walking on a compliant
surface than when walking overground. This lowering of the vertical COM peak provides a more stable
posture (MacLellan & Patla, 2006). Subsequently, MacLellan and Patla (2006) showed that step width,
step length, and step time all increased when walking on a compliant surface as a compensatory reac-
tion to widen the base of support and provide better control of the COM. These proactive and reactive
motor control adaptations may have contributed to attenuations in COM accelerations on the compli-
ant surface in the present study.

Although stride interval dynamics have the capacity to distinguish between able-bodied controls
and individuals with Parkinson’s disease and Huntington’s disease (Hausdorff, Cudkowicz, Firtion,
Wei, & Goldberger, 1998; Hausdorff, Mitchell, et al., 1997; Hausdorff et al., 2000), and fallers from
non-fallers in patients with higher-level gait disorders (Herman et al., 2005), it could not distinguish
overground walking from walking on a compliant surface for able-bodied individuals. Similarly, Gates
and Dingwell (2007) found that stride interval dynamics were not significantly altered between pa-
tients with peripheral neuropathy and controls.

In addition, the scaling exponents of the toe-off time series were in high agreement with the scaling
exponents derived from the heel-strike time series. This finding shows that scaling exponents derived
from toe-off time series can be used as an alternative measure for stride interval dynamics. This is
especially important for studies involving children with cerebral palsy who commonly have equinus
(i.e. heavy-toed gait) (Gage, 1991).

The 4,7 of the ML and VT lower trunk accelerations were significantly decreased on the compliant
surface as compared to both OG conditions. Although this seems counterintuitive, Dingwell and
Cusumano (2000) also reported that individuals with peripheral neuropathy exhibited lower i
values for upper body accelerations than control subjects. They proposed that this improvement in
local dynamic stability was attributed to a decrease in gait speed (Dingwell & Cusumano, 2000). How-
ever, in our study, gait speed decreased only slightly on the CS condition, but not significantly. Post hoc
ANOVA analysis revealed that the change in stride interval during the compliant surface condition
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may be a covariate influencing ;7 in the ML and VT directions. This suggests that increased mean
stride intervals may have possibly contributed to the decreased /;; value. Another possible covariate
is increased cautiousness, resulting in a conscious compensatory response that may in turn enhance
local dynamic stability (Lee & Hidler, 2008; Prokop, Schubert, & Berger, 1997; Stolze et al., 1997). It
would be enlightening if future studies investigate the local dynamic stability of elderly individuals
with fear of falling.

This study demonstrated that walking on a compliant surface can be distinguished from over-
ground walking by the maximum Lyapunov exponent. Stride interval variability, RMS trunk acceler-
ations and stride interval dynamics seem to be less sensitive to changes in surface compliance. The
inability of gait variability measures (i.e., stride interval variability and RMS trunk accelerations) to
distinguish between overground walking and walking on a compliant surface further supports the
widely accepted notion that traditional measures of variability are inadequate to quantify dynamic
stability (Buzzi & Ulrich, 2004; Dingwell & Cusumano, 2000; Dingwell et al., 2001; England & Granata,
2007; Lockhart & Liu, 2008). Walking is a dynamic condition and thus measures should reflect both
time and movement (England & Granata, 2007).

We recognize that stride interval dynamics quantifies temporal fluctuations (time component) in
an individual’s stride interval time series (kinematic component). However, it seems that temporally
correlated strides are generated regardless of the system’s local dynamic stability. As a note, the
resulting scaling exponents in this study were considerably higher than previous studies investigating
stride interval dynamics (Frenkel-Toledo et al., 2005; Hausdorff et al., 1996, 2000; Hausdorff, Mitchell
et al., 1997; Herman et al., 2005; Jordan et al., 2007). This increase in « values might be attributed to a
repetitive, circular walking of participants around the mats. Similar behavior has been observed in the
analysis of grip forces exerted during different drawing or handwriting tasks (Fernandes & Chau,
2008). In particular, higher o values were observed while participants conducted a repetitive circle-
drawing task as opposed to a linear handwriting task.
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